
International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Multitenancy in SaaS: A comprehensive
Survey

 Pallavi G B, Dr. P Jayarekha

Abstract— Cloud computing is a technology which provides enterprise-grade computing resources as services to customers through
internet. One of the popularly available services is software viz., software as a service (SaaS). Many of the SaaS providers make use of a
multitenant model to host their applications. Multitenancy is an architectural approach in which a single instance of a software application
serves multiple customers referred as tenants, where one application is run on a single database instance for multiple organizations.
However, since sharing of a single instance of software leads to distribution of underlying hardware resources among tenants, a multitenant
platform poses challenges with respect to architectural, implementation and security issues. In this paper, we have made an extensive
survey to understand the various aspects of these issues. The study results can be used not only to identify advantages and disadvantages
of these aspects, but also to identify areas requiring future research.

Index Terms— Architecture, Implementation, Multitenancy, SaaS, Security, Metadata, Survey
—————————— ——————————

1 INTRODUCTION
 Cloud Computing has become an important computing
technology. Bhaskar Prasad et al., [1] in their survey states that
cloud computing has emerged as a popular computing model
to support large volumetric data using clusters of commodity
computers.
 According to Peter Mell et al., NIST [16], cloud computing
is a model for enabling convenient, on-demand access through
internet to a shared pool of configurable computing resources
that can be rapidly provisioned and released with minimal
management effort or service provider interaction. The users
can access these services available, without having any previ-
ous know-how on managing the resources involved.
 One of the important services available today on cloud
computing paradigm is software as a service. SaaS is a novel
delivery model of software that provides an application for
multiple users via internet as a form of ‘on demand ser-
vice’[2].This is an attractive offer for software companies as
they can use various IT services without the need to purchase
and maintain their own IT infrastructure[15]. Also, service
provider achieves full economy of scale by hosting such SaaS
application using a multitenant model.
 The authors Corl-Paul Bezemer and Andy Zaidman in [15]
positions multitenancy as one of the key concerns in SaaS.
They describe multitenancy as an architectural principle that
enables SaaS application to serve multiple client organizations
(tenants) using a single service instance.
. ————————————————

Pallavi G B, Assistant Professor, Dept of CSE,BMSCE is currently pursuing
Ph.D. in the field of Multitenancy in SaaS in VTU,India. E-mail: palla-
vi.cse@bmsce.ac.in
Dr. P Jayarekha, Associate Professor,Dept of ISE,BMSCE holds Ph.D. degree
in computer science. She has published more than 15 research papers in re-
ferred International Journals and also few in national and international confer-
ences. Research Scholars are working on various fields like cloud computing,
WSN and related areas under her guidance.E-mail: jayarekha.ise@bmsce.ac.in

 Multitenancy invariably occurs at the database layer of the
SaaS application[5] i.e., customer share the same hardware
resources by using a single shared application and database
instance, while at the same time tenants are isolated from one
another as if they were running on physically segregated re-
sources
 One of the main advantages of a multi tenant application is
the operational benefits [22]. Since all the application code is in
one place, it is much easier to maintain, update and backup
the application and its data. Another advantage of multi ten-
ancy is the lower system requirements. Because an application
and database are shared by multiple clients, it is not necessary
to have a dedicated server for every client. Resource utiliza-
tion is near optimal and customers can avoid under/over pro-
visioning of resources.
 However, multitenant application poses several challenges
and difficulties as well. Some of these challenge stated by au-
thors of [15] are as follows:
Performance: Equal amount of resources assigned to each
tenant may lead to very inefficient utilization of resources and
is therefore undesirable in a multitenant system.
Scalability: Because all the tenants share the same application
and data store, scalability has become one of the major issues.
Addition to that, tenants from various geographical locations
may use an application, which can have an impact on scalabil-
ity requirement.
Security: Security is one of the key challenges of multitenancy,
as a security breech can result in exposure to data of other ten-
ants. So data protection is an important issue in multitenancy.
 In order to meet such challenges multitenant architectural,
implementation and security related research are being carried
out.
 This paper describes a comparative study of these different
aspects of multitenancy. The paper is organised as follows:
Section 2 introduces the architectural issues of multitetancy,
Section 3 briefs about various implementation details of mul-
titenancy and Section 4 defines security concerns associated
with multitenancy, finally Section 5 concludes the paper.

41

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 7, July-2014
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

2 ARCHITECTURAL ISSUES OF
 MULTITENANCY

As mentioned, multitenancy is an architectural approach that
benefits both the multitenant application provider and users.
Various architectural approaches have been devised as a result
of research on this principle.

2.1 Architectural overview for multitenancy
An architectural overview for multitenancy has been present-
ed by the authors of [15] as shown in Fig 1. They argue that
multitenancy could become a cross cutting concern in any
SaaS application as it affects almost all layers of a typical ap-
plication.

Fig1. Architecture overview for multitenancy [15]

In Fig 1, a tenant –specific authentication mechanism is shown
in order to authenticate tenants to access only their own data.
Further configuration layer facilitates tenants to make their
own application specific customization like changing layout
style, creating workflow etc so that user gets a feel as if he
were working in a dedicated environment. The database layer
is of at most importance in any multitenant environment as all
the tenants make use of the same database. Hence data isola-
tion among tenants is a major requirement. But because most
of the current off-the –shelf DBMSs are not capable of dealing
with multitenancy a layer between business logic and applica-
tions database pool could handle tasks like creation of new
tenants in the database, query adoption and load balancing.

2.2 Types of Architecture

As per Frederick Chong et a1, [8] there are mainly three kinds
of architecture of multitenancy that are applicable as for as
database sharing among tenants are concerned.

1. Shared application, separate database: Each tenant obtains
a private database instance while sharing a single machine.

 Fig 2 [8]

2. Shared application, shared database, separate table: Each
tenant obtains a private set of tables while sharing a single
database instance

Fig 3 [8]

3. Shared application, shared table: Each tenant shares a sin-
gle database instance and single set of tables.

 Fig 4 [8]

2.3 Metadata-driven architecture of multitenancy

 Craig D Weismann et al., in [3] mentions that a multitenant
 application can fulfil the requirement of multiple customers
 by using the hardware resources and staff needed to manage
 just a single software instance [Fig 5].

Fig 5 A multitenant application shares a single stack of re-
sources to satisfy the needs of multiple organization [3]

 However the authors in [3] describe how Force. Com, one of
the leading titans of SaaS, has adopted metadata-driven archi-
tecture to achieve multitenancy. As per the authors, in
Force.com, everything exposed to developers and application
users is internally represented as metadata. When developers
write custom application, defines custom table, write some
procedural code, Force.com does not create an actual table in a
database or compile any code. Instead, Force.com simply
stores metadata that the platform’s engine can use to generate
the “virtual” application components at runtime. When some-

42

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 7, July-2014
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

one wants to modify or customize something about the appli-
cation, all that’s required is a simple non-blocking update to
the corresponding metadata .
 The authors also stress upon the need of a multitenant ap-
plication that allow tenants to

To create custom extensions
To keep data secured in a shared environment
To customize the application interface and business
logic without affecting functionality and availability
To upgrade applications code base without breaking
tenant specific customization.

 In order to attain these characteristics the authors suggests
that multitenant application must be dynamic or polymorphic
which is achieved by adopting a runtime engine that generates
application component from metadata-data about application
itself. Hence this kind of architecture is termed as metadata
driven architecture [Fig 6].

 Fig 6 Metadata driven architecture [3]

 Sungjoo Kang et al., in [4] have adopted this approach while
designing architecture for a multitenant SaaS application plat-
form as shown in Fig 7. This is a three tier architecture which
provides an execution environment on which business SaaS
applications can operate on.

Fig 7 Conceptual architecture for SaaS platform [4

 Fig 7 Conceptual architecture for SaaS platform [4]

As per the study of this paper:

The platform is composed of several key components
like Configurator, Runtime Engine and Metadata
Management System. The configured aspects of SaaS
application by the tenant manager are stored as
metadata in metadata database. Codebase developed
by application developers is stored in application da-
tabase. Runtime engine generates tenant specific ap-
plication using codebase and metadata.
Metadata management system provides two key fea-
tures for supporting multitenancy.

The first one is an access control for support-
ing multiple tenants which is accomplished
by using metadata API’s for Logical Tier.
When the web browser sends request to the
application server, business logic access to
database with metadata API. Then, Metada-
ta management system converts the request
to the optimized query to retrieve tenant
specific UI pages and data.

The other feature is providing extended
fields for data object. As each tenant would
require additional data to be stored in the
database, they might have to add extra fields
along with the fields provided in the data-
base. This is achieved by adding the metada-
ta information about the additional fields in-
to the metadata database of custom fields
which will be used to extract the specific ex-
tended fields of specific tenants at runtime.

Steve Bobrowski in [12] stipulates such meta-data driven mul-
titenant database approaches as organic Multitenancy. As per
the author, Organic Multitenancy can be described as an ap-
pcentric resource sharing model – in which multitenancy is
woven into the fabric of the cloud from ground up. The author
also gives example of Database.com, an underlying organic
multitenant database that powers Force.com and which makes
use of a runtime engine that generates all application compo-
nents from metadata.

3 IMPLEMENTATION OF MULTITENANCY
Dean Jacobs and Stefan Aulbach describes and compares the

three approaches of implementing multi-tenant databases :
shared machine, shared process, and shared table[7] which
corresponds to the three architectures described by Frederick
Chong et a1 in [8]. Within the scope of the experiments they
conducted, they list their observations about each approach as
follows –
1. Shared Machine

It does not require modifications of implementation
of database
It does not reduce customer isolation
Memory pooling does not take place.
Each database requires its own connection pool on
each application server and sockets are not shared
among customers.

43

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 7, July-2014
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

2. Shared Process
Pooling of memeory and scalability is achieved in a
better way.
Customers can share memory and connection pools.
However, scalability can be further improved by
adopting the third appraoch that is shared table ap-
proach.

3. Shared Table
Its best at pooling resources
Administrative operations can be executed in bulk.
Connection pools can be shared by customers.
Migration is hard because the files on disk have in-
termingled data from multiple customers.
Performance is an issue since this intermingling may
spread out across many pages.
Security will be a major concern as connection pools
and data are shared.

 In order for the tenants to store data in a single set of tables,
several storage models are prescribed so that all tenants data
is stored in one set of tables and when a particular tenanat
reqests for a data, only his requested data is provided and all
the other tenant’s data is hidden .

3.1 Storage Models

In [5], Stefan Aulbach and team discussed about various stor-
age models used to implement multitenant databases of
shared table. The different models termed as schema mapping
techniques and their working as per the authors are:

Basic layout
Private table layout
Extension table layout
Generic Structures

Universal table layout
Pivot table layout
Chunk table layout

I. The basic technique for implementing multi-tenancy is to
add a tenant ID column to each table and share tables among
tenants.This technique is used by simple SaaS services like
Email etc. However, this approach is a good way to consoli-
date various tenants data to be stored on the same database.
It’s suitable for tenants who do not need extensions on the
data fields they operate on as this approach does not provide
extensibility.
 Basic layout Table 1

II. The next approach is called private table layout which can
be adopted which supports extensibility. In this approach,

each tenant will be given their own private table.The metadata
related to these private tables are managed by database, there
is no overhead of maintaining the metadata in the private
tables of tenants. However, as separate tables are maintained
on a per tenant basis, this approach provides only moderate
consolidation of these tables.

 Private Table layout
 Table2a Table 2b

Hence, a better approach is to combine the above two men-
tioned layouts to obtain better consolidation and extensibility.
Viz ., all the tenant’s common data is stored in a single base
table while their corresponding extension fields are stored and
maintained in separate extension fields in extension tables as
shown in Table 3a,3b and 3c. But, because multiple tenants
may use the same extension tables, the extension tables and
the base tables should be given a tenant ID column .Also inor-
der to reconstruct a logical source table corresponding to a
particular tenant a row column needs to be added against
which join conditions will be applied. This in turn adds the
overhead of adding metadata in the data table itself as shown

 Extension table layout
 Table 3a

 Table 3b

Account
TenId AcctId Name
22 1 Arya
22 2 Girish
37 1 Bipin
45 1 Bhaskar

 Table 3c

Account22 Account35
Aid Name Hospital Beds Aid Name
1 Arya Apollo 120 1 Bipin
2 Girish St.John 1255

Table 2c
Account 42
Aid Name Dealers
1 Bhaskar 70

AccountExt

TenId Row AcctId Name
22 0 1 Arya
22 1 2 Girish
37 0 1 Bipin
45 0 1 Bhaskar

AutomotiveAccount

Tenant Row Dealers

45 0 70

Health care Account

Tenant Row Hospital Beds
22 0 Apollo 120
22 1 St.John 1255

44

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 7, July-2014
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

 Apart from these approaches one of the methods widely
adopted to implement multitenant data base is to use generic-
structures.These generic structures do not place a limitation on
consolidation or exensibility.The logical tables could be
mapped to fixed generic structures. The various kinds of ge-
neric structures are:

Universal Table Layout: A Universal Table is a generic
structure with a Tenant column, a Table column and a large
number of generic data columns. The data type of these gener-
ic columns will be VARCHAR into which the other datatypes
can be converted. Here the n-th column of each logical source
table for each tenant is mapped into the n-th data column of
the Universal table so that different tenant can extend the
same table in different way.
The advantage of this layout is that there is no need to recon-
struct the logical source table as all the data are stored in the
same physical universal table.Hence data needs to be selected
from one singletable.
The disadvantage is that the rows needs to be very wide as it
has to accommodate all possible data fields of all tenants and
comprises of more null value for the obvious reason that all
tenants need not use all data fields of the table.
 Universal table layout Table 4

Pivot Table Layout: In this type each field type(int, str etc)
of the logical table is stored in a separate pivot table.Hence the
more the number of data types of tenants the more the pivot
tables. Each field of each row in a logical source table is given
its own row in the pivot table. Hence each pivot table will
have Tenant, Table and Row columns as shown in the Table
5a, 5b and 5c.The Col column in these tables specifies which
source field a row represents and a single data bearing coulmn
for the value of that field.
 The advantage of this generic approach is that the number of
null values of data fields are minimal unlike universal table.
Type safety is also achieved since generic data types like var-
char is avoided.T
The disadvantage is that more number of joins has to be exe-
cuted to reconstuct the logical table as a result of a query exe-
cution. Also the actual physical table contains most of the me-
ta data stored in it used for reconstruction of thelogical tables.

Pivot table layout

 Table 5a

 Table 5b

Table 5c

Chunk Table Layout: A third generic structure called
chunk table is specified here. Chunk table is like a pivot table
execept that it has a set of of data columns of various tables
and Col column of pivot table is replaced by a Chunk column.
A logical source table dataset will be partioned into dense
subsets. These subsets are placed under a group of columns in
the chunk table and assigned a chunk id.
 The advantage of this method as compared to Pivot table
layout is , it reduces the ratio of stored metadata-to actual data
and also the overhead for reconstructing the logical source

Universal
Tenant Table Col1 Col2 Col3 Col4 Col5 Col6
22 0 1 Arya Apollo 120 ,--- ,---
22 1 2 Girish St.John 1255 ,--- ,---
37 0 1 Bipin ,--- ,--- ,--- ,---
45 0 1 Bhaskar 70 ,--- ,--- ,---

Account17

Aid Name Hospital Beds
22

Arya Apollo 120

22 Girish St.John 1255

Pivotint
Tenant Table Col Row Int
22 0 0 0 1
22 0 3 0 120
22 0 0 1 2
22 0 3 1 1255
37 1 0 0 1
45 2 0 0 1
45 0 2 0 70

Pivotstr

Tenant Table Col Row Str

22 0 0 0 Arya

22 0 3 0 Apollo

22 0 0 1 Girish

22 0 3 1 St. John

37 1 0 0 Bipin

45 2 0 0 Bhaskar

Row 0

45

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 7, July-2014
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

table.As compared to Universal table layout, overly-wide
columns are broken down and supports typing.

 Chunk table layout

 Table 6a

 Table 6b

With the above techniques in hand, [5] has proposed a new
technique called Chunk Folding. In this technique, the logical
source tables are vertically partitioned into chunks that are
folded together into different physical multi-tenant tables and
joined as needed. In this approach, the most heavily utilized
parts of logical schemas of the tenants are mapped into the
conventional tables and the remaining parts into the chunk
tables that match their structure as closely as possible hence
the metadata budget is effectively managed between conven-
tional and chunk tables.

 Chunk Folding table layout

 Table 7a

 Table 7b

3.2 Implementing Multi-tenant database using native
 support of RDBMS

The storage models mentioned above to implement multi ten-
ant databases have several advantages like, it reduces cost per
tenant, and generic structure poses no limitation on consolida-
tion and extensibility of tenant specific attributes. However,
Oliver Schiller and et al., in [6], points out that these ap-
proaches also have several drawbacks as it implements most
per-tenant operations such as schema extension, backup and
recovery in the application itself. The authors also mentions
that query re-writer component used in the application con-
ducts a major part of data dictionary management like:

Storing data type of a tenant specific attribute.
Maintaining the tenant’s logical query structure.
Enforces isolation of Meta data and application data be-
tween tenants.

For these reasons, query re-writer is a complex and critical
component that requires a clean design and sophisticated test-
ing.
 In order to overcome the above mentioned drawback au-
thors of [6] have suggested a different approach in implement-
ing multitenant database. This approach allows maintaining
an application core schema while enabling per tenant schema
extension. Also, it is the RDBMS that maintains the data dic-
tionary such as data types of tenant specific attributes instead
of application itself maintaining all the metadata information
of the database. This approach also facilitates direct access to
RDBMS without need of complex query rewriter which relies
on native support of multitenancy in RDBMS.

3.3 XML Support to implement multitenant database

Franclin S. Foping et al., in [9] has proposed a hybrid schema
sharing technique for multitenant applications. They basically
maintain two separate tables. One is a tenant table where in all
common data are stored [Table 8a].

Account17

Aid Name Hospital Beds
Row:0 22 Arya Apollo 120

22 Girish St.John 1255

Chunkstr/int

Tenant Table Col Row Int Str

22 0 0 0 1 Arya

22 0 3 0 120 Apollo

22 0 0 1 2 Girish

22 0 3 1 1255 St.John

37 1 0 0 1 Bipin

45 2 0 0 1 Bhaskar

45 2 0 0 70 ,--

ChunkRow

Tenant Table Chunk Row Int1 Str1

22 0 3 0 120 Apollo

22 0 3 1 1255 St.John

45 2 0 0 70 --

AccountRow
TenId Row AId Name
22 0 1 Arya
22 1 2 Girish
37 0 1 Bipin
45 0 1 Bhaskar

46

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 7, July-2014
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Table 8a

The other is an extension table [Table 8b] which stores tenant
specific data in XML form as shown.

 Table 8b

Whenever a tenant throws a query, it is executed by attaching
a tenant-id at runtime.
The advantages of storing data in XML form are:

Querying of tenant specific data will not be hindered
as null values are avoided.
Indexes can be applied on tenant fields and hence
queries are optimized on a per tenant basis.

However the drawback of this approach is that XML docu-
ment cannot be validated against a schema as this document
will be generated at runtime.

4 SECURITY

The risks involved in SaaS applications accessing databases
are been divided into three categories in [10].

Managing user identity
Managing user access
Managing user credentials.

The same is applicable for SaaS applications handling mul-
titenant databases as well. Hence there is a need to address
these issues in multitenant environment.
 In an article named “Access Control in Multitenant applica-
tions with visual guard” [13], author Novalys talk about secur-
ing multitenant application with access control mechanisms
like user authentication and user permissions. According to
the author, any multitenant application need to meet two cri-
teria -> protecting data from other tenants -> delegate admin-
istrative privileges which can be achieved using access control
systems like Visual Guard which works with various applica-
tion architectures.
 In [14] author Mr.Ramkumar suggests that in a multitenant

environment the older paradigm of roles and page level access
control could be replaced by new paradigm of privilege based
access controls. i.e., instead of hard coding access control poli-
cies of the product into the roles, a user is checked for the priv-
ilege for doing any action and user/roles privileges are re-
solved during runtime but not hard coded at design time.
 However the author also mentions that not only the
roles/privileges could be mapped during runtime but also the
data scopes should be configurable by an end customer and
mapped with each role/privilege mapping. This control con-
figuration can then be stored tenant wise. During runtime ap-
propriate tenant specific access control setting can be looked
up and decide to allow or disallow a particular action in the
application.
 Thus security in multitenancy opens up several issues which
could be understood researched and addressed.

5 CONCLUSION

Multitenancy is a promising paradigm which enables shar-
ing of a single service instance among multiple tenants and
also leverages benefits for service provider. However in this
process of sharing, several open issues needs to be addressed
related to resource sharing, scalability and security. This pro
posed survey provides researchers the idea on current mul

titenant systems, hype and challenges.

ACKNOWLEDGMENT

The authors would like to acknowledge and thank Technical
Education Quality Improvement Program [TEQIP] Phase 2,
BMS College of Engineering.

REFERENCES
[1] Bhaskar Prasad Rimal,Enumi Choi, Ian Lumb, “A Taxanomy and Survey of
Cloud Computing System”, Fifth International Joint Conference on INC, IMS and
IDC 2009.
[2] Software as a Service, http://en.wikipedia.org/wiki/- Software_as_a_service.
 [3] Craig D Weissman, Steve Bobrowaki , “The Design of the Force.com Mul-
titenant Internet Application Development Platform”, SIGMOD’09, June 29 - July 2,
2009, Providence, Rhode Island, USA., ACM 978-1-60558-551-2/09/06, 2009.
 [4] Sungjoo Kang, Sungwon Kang, Sungjin Hur, “A Design of the Conceptual
Architecture for a Multitenant SaaS Application Platform”, First ACIS/JNU Inter-
national Conference on Computers, Networks, Systems, and Industrial Engineer-
ing 978-0-7695-4417-5/11, IEEE 2011.
[5] Stefan Aulbach, Torsten Grust, Dean Jacobs, Alfons Kemper, Jan Rittinger,
“Multitenant Databases for Software as a Service-Schema Mapping Technique”,
SIGMOD’08, June 9–12, 2008, ACM 978-1-60558-102-6/08/06 2008.
[6] Oliver Schiller, Benjamin Schiller, Andreas Brodt, Bernhard Mitschang, “Native
Support of Multi-tenancy in RDBMS for Software as a Service”, EDBT 2011, March
22–24, 2011, Uppsala, Sweden, ACM 978-1-4503-0528-0/11/0003, 2011.
[7] Dean Jacobs, Stefan Aulbach, “Ruminations on multi-tenant databases”, In
Datenbanksysteme in Business, Technologie und Web, pp. 514-521,2007, ISBN:
978-3-88579-197-3Digital Object Identifier 10.1.1.140.6429
[8] Frederick Chong, Gianpaolo Carraro, Roger Wolter, “Multitenant Data Architec-

Manager
ID
INT

Username
VARCHAR

Full Name
VARCHAR

Contact
INT

Coun
-ty ID
INT

1 Ramachan Ramachandra
Nayak

083145672
1

2

2 Ashutosh Ashutosh
Agarwal

084178654
9

1

3 priya123 Priyanka
Choudary

083256784
2

3

Manager ID
 INT

Extension
XML

 1 <Parameters><Hospital name=”Apollo”>
<Beds>120</Beds>
</Hospitalname>
</Parameters>

47

IJSER

International Journal of Scientific & Engineering Research Volume 5, Issue 7, July-2014
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

ture” Microsoft Corporation, http://msdn.microsoft.com/en-
us/library/aa479086.aspx, 2006.
[9] Franclin S. Foping, Ioannis M. Dokas, John Feehan, Syed Imran, “A New Hybrid
Schema- Sharing Technique for Multitenant Applications”
[10] Cisco SaaS access control
http://www.cisco.com/c/en/us/products/collateral/security/anyconnect-
secure-mobility-client/white_paper_c11-596141.html
[11] Securing Multitenancy and Cloud Computing ,White Paper, Juniper Network,
2000381-002-eN Mar 2012
[12] Steve Bobrowski, “Optimal Multitenant Designs for Cloud Apps”, 4th Interna-
tional Conference on Cloud Computing, 978-0-7695-4460-1/11, ISBN: 978-0-7695-
4460-1 Digital Object Identifier 10.1109/CLOUD.2011.98 IEEE 2011.
[13] Article by Novalys, Access Control in Multi-Tenant Applications with Visual
Guard, 2011.
[14] Article by Rajkumar R.S.,Access Control in Multi-tenant Applications , 2012.
[15] Cor-Paul Bezemer, Andy Zaidman, “Multi-Tenant SaaS Applications: Mainte-
nance Dream or Nightmare?”, Report TUD-SERG-2010-031, Delft University of
Technology Software Engineering Research Group Technical Report Series 2010.
[16] Peter Mell, Timothy Grance, http://csrc.nist.gov/publications/nistpubs/800-
145/SP800-145.pdf, The NIST definition of cloud computing, September 2011.
[17] Sanjeev Pippal,Vishnu Sharma, Shakti Mishra, D.S.Kushwaha, “An Efficient
Schema Shared Approach for Cloud based Multitenant Database with Authentica-
tion and Authorization Framework”, International Conference on
P2P,Parallel,Grid,Cloud and Internet Computing, Barcelona, 26-28 Oct. 2011 ,pp
213 – 218, Print ISBN: 978-1-4577-1448-1, Digital Object Identifier :
 10.1109/3PGCIC.2011.39
[18] Anthony T.Velte, Toby J.Velte, Robart Eisenpeter, “Cloud Computing: A Prac-
tical Approach”, Tata McGraw-Hill Publishers, 1st Edition, 2009, ISBN:
0071626948
[19] Cor-Paul Bezemer, Andy Zaidman, “Challenges of Reengineering into Mul-
titenant SaaS Applications” Report TUD-SERG-2010-012, Delft University of Tech-
nology Software Engineering Research Group ,Technical Report Series 2010
[20] “Secure Multi-Tenancy for Cloud Architecture with NetApp, Cisco, and
VMware”, http://www.netapp.com/in/technology/secure-multi-tenancy.html.
[21] Jose M.Alcaraz Calero, Nigel Edwards, Johannes Kirschnick, Lawrence
Wilclock, Mike Wray, “Towards a Multitenancy Authorization System for Cloud
Services”, 1540-7993/10, IEEE 2010.
[22] http://www.wolfframeworks.com/benefits.asp

48

IJSER

